JOURNAL OF APPLIED POLYMER SCIENCE VOL. 17, PP. 3293-3303 (1973)

An Equation of State for Molten Polymers

KRISHNA RAO* and RICHARD G. GRISKEY,[†] Newark College of Engineering, Newark, New Jersey 07102

Synopsis

A simple, generalized equation of state has been developed for molten polymers. The equation yielded calculated pressure-volume-temperature data that deviated by 1% or less from experimentally determined data. The use of the equation requires only that the polymer's glass temperature and density at 25 °C and 1 atm be known. Polymer glass temperatures can also be estimated with the equation.

Physical property data are a major and important requirement for progress in polymer engineering and science. One particularly critical need is to correctly delineate the pressure-volume-temperature behavior of both solid and molten polymers. A knowledge of this behavior gives the basic information needed not only to treat fundamentally polymer processing, but also to develop a clearer understanding of the polymers themselves. The best method of elucidating pressure-volume-temperature data is by experimental measurement. Unfortunately, however, the magnitude of such an endeavor for the vast array of existing polymers eliminates experimental data as a way of satisfying the need. An alternate method would be the development of a generalized equation of state that would allow the polymer scientist or engineer to compute pressure-volumetemperature data. The present work deals with such an equation for molten polymers.

Any suitable equation of state should meet certain criteria. In the case of polymers these are:

1. The equation must be applicable over wide ranges of temperature and pressure.

2. If possible, the equation should be generalized. In other words, the equation should apply to a large number of different polymers rather than one particular polymer such as polyethylene.

3. The equation should be simple and easily used. Complex forms requiring excessive mathematical manipulation should be avoided.

4. The equation should be such that it can be used to predict the behavior of polymers for which no pressure-volume-temperature data are available. Ideally, we should be able to calculate pressure-volume-

* Present Address: Givaudan Corporation, Nutley, New Jersey 07014.

† Present Address: College of Engineering and Applied Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201.

Fig. 1. Polymer compressibility factors vs. reduced temperature (T/T_g) .

temperature data for a polymer where only easily measured physical properties are known (such as glass temperature at atmospheric pressure, melting temperature at atmospheric pressure, or density at room temperature and atmospheric pressure).

A number of equations of state¹⁻¹⁵ have been developed for polymers. These are summarized in Table I with respect to the criteria discussed above, the basis of the given equation and applicability.

The majority of polymer equations of state have been applied mainly for solid polymers. The exceptions were the work of Smith,¹¹ McGowan,^{12,13} Simha,¹⁴ and Kamal.¹⁵ None of these equations for the molten polymers, however, met all of the criteria. In fact, the only equation for either solid or molten polymers that did meet the criteria was that of Whitaker and Griskey.¹⁰

On this basis, it was felt that the original Whitaker-Griskey equation if modified could provide an equation of state for molten polymers that would satisfy all of the criteria of Table I.

At this point it is worthwhile to review the development of the Whitaker-Griskey equation of state. To begin with, the equation was based on the theory of corresponding states. More specifically, the concept of a compressibility factor,

$$\gamma = \frac{PV}{RT} \tag{1}$$

was introduced. It was then found that plots of γ versus a reduced temperature (temperature divided by the polymer's glass temperature) yielded a set of matching curves. An example is shown in Figure 1, where data for a variety of polymers at 1 atm pressure are plotted.

TABLE I Comparison of Polymer Equations of State

Requires experimental pressure- volume- temperature data	yes	yes		yes	yes	yes	yes	yes		рu	yes	yes	yes	yes
Applicable at high temperature	5	yes		yes	yes	yes	yes	ۍ.		yes	yes	yes	2	yes
Applicable at high pressure	ou	no		yes	yes	yes	yes	yes		yes	yes	yes	¢.i	yes
Reference	I	61		ŝ	4, 5	9	7	8, 9		10	11	12, 13	14	15
Simple, easy to use?	ou	, no		yes	yes	yes	yes	yes		yes	yes	yes	no	yes
General?	ou	ou		ou	оц	ou	ou	ou		yes	0U	no	оп	no
Basis of equation	quantum mechanics	quantum mechanics	modified Van der Waal's	equation	semiempirical	semiempirical	semiempirical	virial equation of state	corresponding state	theory	Hirai-Eyring equation	semiempirical	quantum mechanics	virial equation of state
Equation	Flory	DiBenedetto	Spencer-Gilmore		Tait	Murnaghan	Birch	Weir	Whitaker-Griskey		Smith	McGowan	Simha	Kamal

MOLTEN POLYMERS

3295

Fig. 2. Parameter x vs. pressure.

Temp., °C	Specific volume experimental	Specific volume calculated	Per cent error
	P =	1 atm	
140.	1.2720	1.2715	0.038
150.	1,2800	1.2802	0.018
161.	1.2890	1.2893	0.022
172.	1,2990	1.2982	0.063
182.	1.3060	1.3060	0.003
203.	1.3220	1.3229	0.067
	P = 2	00 atm	
140.	1.2490	1.2572	0.658
150.	1.2560	1.2652	0.734
161.	1.2640	1.2735	0.754
172.	1.2730	1.2817	0.683
182.	1.2790	1.2889	0.774
203.	1.2910	1.3043	1.033
	P = 4	00 atm	
150.	1.2370	1.2508	1.117
161.	1.2430	1.2584	1.239
172.	1.2520	1.2658	1.106
182.	1.2570	1.2724	1.226
203.	1.2670	1.2865	1.537

TABLE II
High-Density Polyethylene

(continued)

	Specific	Specific	
	volume	volume	. .
Temp., °C	experimental	calculated	Per cent error
	P =	600 atm	
161.	1.2270	1.2437	1.357
172.	1.2340	1.2504	1.329
182.	1.2390	1.2563	1.400
203.	1.2470	1.2691	1.769
	P =	800 atm	
161.	1.2130	1.2292	1.336
172.	1.2190	1.2353	1.334
182.	1.2230	1.2406	1.439
203.	1.2310	1.2520	1.707
	P = 1	1000 atm	
161.	1,1930	1.2150	1.845
172.	1,2060	1.2204	1.194
182.	1.2090	1.2251	1.335
203.	1.2160	1.2353	1.586
	P = 1	1200 atm	
172.	1.1940	1.2058	0.987
182.	1.1970	1.2100	1.082
203.	1,2030	1.2189	1.318
	P =	1400 atm	
172.	1,1830	1.1914	0.711
182.	1.1860	1.1950	0.760
203.	1.1920	1.2027	0.898
	P =	1600 atm	
182.	1.1760	1.1803	0.366
203.	1.1810	1.1868	0.492
	P =	1800 atm	
182	1.1660	1,1658	0.015
203	1,1710	1.1712	0.015
	P =	2000 atm	
189	1 1580	1 1516	0 556
104.	1 1690	1 1558	0.000
400.	1.1020	1.1000	V.UUT

TABLE II (continued)

The behavior of Figure 1 led to the concept of a generalized relationship for the pressure-volume-temperature relationship for polymers. The ultimate equation attained in this manner was

$$V = \left[(0.01205) / (\rho_0)^{0.9421} \right] (p)^{n-1} \left(\frac{T}{T_o} \right)^{m+1} R.$$
 (2)

Pressure-volume-temperature data computed from the equation deviated on the average by only about 2% from experimental data for the polymers of Figure 1. In addition, it was found that the equation applied

Fig. 3. Parameter y vs. pressure.

TAB	LE III
Low-Density	Polyethylene

· · · · · · ·	Specific volume	Specific volume	
Temp., °C	experimental	calculated	Per cent error
	<i>P</i> =	1 atm	
121.	1.2560	1,2548	0.095
130.	1.2630	1.2629	0.012
141.	1.2710	1.2722	0.091
151.	1.2800	1.2809	0.067
175.	1.3010	1.3006	0.031
	P = 2	00 atm	
121.	1,2370	1.2405	0.279
130.	1.2430	1.2478	0.390
141.	1.2490	1.2564	0.591
151.	1.2570	1.2644	0.586
175.	1.2760	1.2825	0.506
	P = 40	00 atm	
121.	1.2150	1.2267	0.962
130.	1.2250	1.2334	0.689
141.	1.2310	1.2412	0.831
151.	1.2380	1.2485	0.849
175.	1.2540	1.2650	0.876
	P = 60	00 atm	
130.	1,2110	1.2194	0.693
141.	1.2150	1.2264	0.942
151.	1,2210	1.2330	0.986
175.	1.2360	1.2480	0.968

3298

(continued)

MOLTEN POLYMERS

	TADLE III	(continued)	
	Specific volume	Specific volume	
Temp., °C	experimental	calculated	Per cent error
	P = 8	00 atm	
130.	1.1910	1.2056	1.229
141.	1.2020	1.2120	0.830
151.	1.2070	1.2179	0.903
175.	1.2210	1.2313	0.842
	P = 10	000 atm	
130.	1.1850	1.1921	0.601
141.	1.1890	1.9978	0.737
151.	1.1960	1.2030	0.587
175.	1.2090	1.2149	0.490
	P = 12	200 atm	
141.	1.1750	1.1838	0.747
151.	1.1840	1.1884	0.372
175.	1.1970	1.1988	0.154
	P = 14	00 atm	
151.	1.1740	1.1740	0.002
175.	1.1860	1.1830	0.249
	P = 10	300 atm	
151.	1.1640	1.1599	0.355
175.	1.1770	1.1675	0.807
	P = 18	300 atm	
151.	1.1550	1.1459	0.786
175.	1.1670	1.1522	1.268
	P = 2	000 atm	
151.	1,1460	1,1322	1.205
175.	1.1580	1.1372	1.800

TABLE III (continuea	i III (continue	a)
----------------------	-----------------	----

equally well to such polymers as polyisobutylene, an ethylene-propylene copolymer, and nylon 66 that were not included in the generalized equation development.

The only area where the equation did not fit was for molten region data. It should be noted that this was true only for polymers with definite melting regions such as polypropylene and polyethylene. Those polymers that had no definite melting region such as polystyrene presented no problem. The reason for the failure of the Griskey-Whitaker equation as given above to fit the molten region can be seen by considering Figure 1. Note that there is a discontinuity for all the polymers with melting regions (curves 3, 10, and 11). In addition, the molten region is effectively displaced from the portion of the curve representing the solid polymers.

The development of the modification of the Whitaker-Griskey equation was undertaken in the same manner as in the original case except that only molten polymer data were used. The polymers included were low-density polyethylene^{17,18} high-density polyethylene,^{17,19} polypropylene,²⁰ nylon 6-10,²¹ and an ethylene-propylene copolymer.²²

	Specific	Specific	
	volume	volume	
Temp., °C	experimental	calculated	Per cent error
	P =	: 1 atm	····· ································
180.	1.3250	1.3259	0.065
200.	1.3380	1.3420	0.298
210.	1.3500	1.3499	0.009
250.	1.3850	1.3803	0.341
	P =	100 atm	
180.	1.3120	1.3192	0.552
200.	1.3260	1.3347	0.658
210.	1.3380	1.3423	0.320
250.	1.3670	1.3714	0.324
	P =	200 atm	
180.	1.2980	1.3129	1.145
200.	1.3140	1.3277	1.042
210.	1.3240	1.3349	0.826
250.	1.3480	1.3628	1.101
	P =	300 atm	
180.	1.2840	1.3066	1.761
200.	1.3020	1.3208	1.444
210.	1.3110	1.3277	1.276
250.	1.3310	1.3544	1.758
	P =	400 atm	
200.	1.2940	1.3140	1.546
210.	1,3020	1.3206	1.431
250.	1.3170	1.3461	2,209
	P =	500 atm	
200.	1.2840	1.3073	1.815
210.	1.2940	1.3136	1.516
250.	1.3060	1.3379	2.441
	P =	600 atm	
200.	1.2760	1.3007	1.934
210.	1,2820	1.3067	1.925
250.	1.3010	1.3298	2.210

TABLE IV Isotactic Polypropylene

The final form of the derived equation was

$$V = K \left(\frac{T}{T_g}\right)^x P^y.$$
(3)

Note that this equation, while similar to eq. (2), has different constants and exponents. The exponents x and y were solely functions of pressure. Their correlation is shown in Figures 2 and 3. Note that the apparent scatter of Figure 3 is not serious since the ordinate actually ranges from 0 to 0.03.

Specific volumeSpecific volumeSpecific volumeTemp., °Cexperimental experimentalcalculatedPer cent error $P = 1$ atm $P = 1$ atm140.1.27581.27390.148175.1.29921.30330.312210.1.32811.33100.217250.1.36631.36100.391 $P = 79$ atm $P = 79$ atm140.1.27221.26820.315175.1.29361.29660.230210.1.31971.32340.279250.1.35121.35230.085 $P = 159$ atm140.1.26551.26260.226175.1.28551.29010.355210.1.30991.31600.463	·			
volumevolumeTemp., °CexperimentalcalculatedPer cent error $P = 1$ atm140.1.27581.27390.148175.1.29921.30330.312210.1.32811.33100.217250.1.36631.36100.391 $P = 79$ atm $P = 79$ atm140.1.27221.26820.315175.1.29361.29660.230210.1.31971.32340.279250.1.35121.35230.085 $P = 159$ atm140.1.26551.26260.226175.1.28551.29010.355210.1.30991.31600.463		Specific	Specific	
Temp., °CexperimentalcalculatedPer cent error $P = 1$ atm140.1.27581.27390.148175.1.29921.30330.312210.1.32811.33100.217250.1.36631.36100.391 $P = 79$ atm140.1.27221.26820.315175.1.29361.29660.230210.1.31971.32340.279250.1.35121.35230.085 $P = 159$ atm140.1.26551.26260.226175.1.28551.29010.355210.1.30991.31600.463		volume	volume	
P = 1 atm $140. 1.2758 1.2739 0.148$ $175. 1.2992 1.3033 0.312$ $210. 1.3281 1.3310 0.217$ $250. 1.3663 1.3610 0.391$ $P = 79 atm$ $140. 1.2722 1.2682 0.315$ $175. 1.2936 1.2966 0.230$ $210. 1.3197 1.3234 0.279$ $250. 1.3512 1.3523 0.085$ $P = 159 atm$ $140. 1.2655 1.2626 0.226$ $175. 1.2855 1.2901 0.355$ $210. 1.3099 1.3160 0.463$	np., °C	experimental	calculated	Per cent error
140.1.27581.27390.148175.1.29921.30330.312210.1.32811.33100.217250.1.36631.36100.391 $P = 79 \text{ atm}$ 140.1.27221.26820.315175.1.29361.29660.230210.1.31971.32340.279250.1.35121.35230.085 $P = 159 \text{ atm}$ 140.1.26551.26260.226175.1.28551.29010.355210.1.30991.31600.463		P =	1 atm	
175.1.29921.30330.312210.1.32811.33100.217250.1.36631.36100.391 $P = 79 \text{ atm}$ 140.1.27221.26820.315175.1.29361.29660.230210.1.31971.32340.279250.1.35121.35230.085 $P = 159 \text{ atm}$ 140.1.26551.26260.226175.1.28551.29010.355210.1.30991.31600.463	40.	1.2758	1.2739	0.148
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75.	1.2992	1.3033	0.312
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.	1.3281	1.3310	0.217
$P = 79 \text{ atm}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.	1.3663	1.3610	0.391
140. 1.2722 1.2682 0.315 175. 1.2936 1.2966 0.230 210. 1.3197 1.3234 0.279 250. 1.3512 1.3523 0.085 $P = 159$ atm140. 1.2655 1.2626 0.226 175. 1.2855 1.2901 0.355 210. 1.3099 1.3160 0.463		P =	79 atm	
175.1.29361.29660.230210.1.31971.32340.279250.1.35121.35230.085 $P = 159$ atm140.1.26551.26260.226175.1.28551.29010.355210.1.30991.31600.463	40.	1.2722	1.2682	0.315
210. 1.3197 1.3234 0.279 250. 1.3512 1.3523 0.085 $P = 159 \text{ atm}$ 140. 1.2655 1.2626 0.226 175. 1.2855 1.2901 0.355 210. 1.3099 1.3160 0.463	75.	1.2936	1.2966	0.230
250. 1.3512 1.3523 0.085 $P = 159 \text{ atm}$ 140. 1.2655 1.2626 0.226 175. 1.2855 1.2901 0.355 210. 1.3099 1.3160 0.463	10.	1.3197	1.3234	0.279
P = 159 atm 140. 1.2655 1.2626 0.226 175. 1.2855 1.2901 0.355 210. 1.3099 1.3160 0.463	50.	1.3512	1.3523	0.085
140.1.26551.26260.226175.1.28551.29010.355210.1.30991.31600.463		P = 1	159 atm	
175.1.28551.29010.355210.1.30991.31600.463	4 0.	1.2655	1,2626	0.226
210. 1.3099 1.3160 0.463	75.	1.2855	1,2901	0.355
	10.	1.3099	1.3160	0.463
250, 1,3389 1,3439 0,374	50.	1.3389	1.3439	0.374
P = 232 atm		P = 2	232 atm	
140. 1.2594 1.2576 0.144	40.	1.2594	1.2576	0.144
175. 1.2775 1.2841 0.519	75.	1.2775	1,2841	0.519
210. 1,3008 1,3092 0.645	10.	1.3008	1.3092	0.645
250. 1.3279 1.3362 0.626	50.	1.3279	1.3362	0.626
P = 316 atm		P = 3	316 atm	
140. 1.2506 1.2519 0.102	40.	1.2506	1.2519	0.102
175. 1.2677 1.2774 0.768	75.	1.2677	1.2774	0.768
210. 1.2902 1.3015 0.878	10.	1.2902	1.3015	0.878
250. 1.3153 1.3275 0.928	50.	1.3153	1.3275	0.928
P = 474 atm		P = A	474 atm	
140. 1.2353 1.2413 0.487	40.	1.2353	1.2413	0.487
175. 1.2531 1.2650 0.952	75.	1.2531	1.2650	0.952
210, 1.2737 1.2874 1.072	10.	1.2737	1.2874	1.072
250. 1.2953 1.3114 1.243	50.	1.2953	1.3114	1.243
P = 618 atm		P = 0	618 atm	
140. 1,2258 1.2319 0.494	40.	1,2258	1.2319	0.494
175. 1.2433 1.2539 0.854	75.	1.2433	1,2539	0,854
210. 1.2632 1.2747 0.908	10.	1,2632	1.2747	0.908
250. 1.2847 1.2970 0.957	50.	1.2847	1.2970	0.957

TABLE V
Ethylene-Propylene Copolymer

The K in eq. (3) was found to be a function of ρ_0 , the density at 25°C and 1 atm, as shown in Figure 4.

Data computed from eq. (3) are compared to experimental values in Tables II to V. As can be seen, the per cent deviations are generally 1% or less. The average deviations for each polymer are: high-density polyethylene, 0.89%; low-density polyethylene, 0.64%; polypropylene, 1.20%; ethylene-propylene copolymer, 0.79%; and nylon 6-10, 0.71%.

Fig. 4. Parameter K vs. ρ_0 .

On the basis of the deviations between the calculated and experimental values, it can be concluded that the modified Whitaker-Griskey equation represents an effective generalized equation of state for molten polymers. It should be noted that pressure-volume-temperature data can be calculated for a polymer simply by knowing its ρ_0 and T_{σ} . The first item is readily available for most polymers. The second (T_{σ}) also can be found either in the literature or estimated from the melting temperature by using Beaman's rule.¹⁶ When ρ_0 and T_{σ} are known, the procedure is then (1) obtain the K value from Figure 4 using ρ_0 ; (2) determine x and y from Figures 2 and 3 (i.e., for the pressure needed); and (3) substitute desired temperature and pressure together with T_{σ} in eq. (3) and calculate V corresponding to the given temperature and pressure.

Equation (3) can also be used to estimate a value for T_g if one piece of data is available, namely, a specific volume at a specific temperature and pressure.

CONCLUSIONS

The conclusions of this work are:

1. A generalized equation of state has been developed for molten polymers.

2. The equation requires only a value of ρ_0 (density at 25°C and 1 atm) and the glass temperature to calculate pressure-volume-temperature data.

3302

MOLTEN POLYMERS

3. Calculated values of pressure-volume-temperature data generally deviated by less than 1% from experimental data.

Notation

- K parameter of equation
- P pressure, atm
- R gas constant, atm cc/°K g moles
- T temperature °K
- T_{g} glass temperature °K
- V volume, cc/gm
- m, n equation parameter
- x, y equation parameter
 - ρ_0 density, g/cc at 25°C and 1 atm
 - γ compressibility factor

References

- 1. P. J. Flory, R. A. Orwall, and A. Vrijo, J. Amer. Chem. Soc., 86, 3507 (1963).
- 2. A. T. DiBenedetto, J. Polym. Sci., A-1, 3459 (1963).
- 3. R. S. Specer and G. P. Gilmore, J. Appl. Phys., 29, 504 (1949).
- 4. P. Nanda, J. Chem. Phys., 11, 3870 (1964).
- 5. J. McDonald, Rev. Mod. Phys., 33, 669 (1966).
- 6. J. Anderson, J. Phys. Chem. Solids, 27, 547 (1966).
- 7. P. S. Ku, Equations of State of Organic High Polymers, AD 678 887, January 1968, Washington, D. C.
 - 8. C. E. Weir, J. Res. Nat. Bur. Std., 50, 153 (1953).
 - 9. C. E. Weir, ibid., 53, 245 (1954).
 - 10. R. G. Griskey and H. L. Whitaker, J. Appl. Polym. Sci., 11, 1001.
 - 11. R. P. Smith, J. Polym. Sci. A-2, 8, 1337 (1970).
 - 12. J. C. McGowan, Polymer, 10, 841 (1969).
 - 13. J. C. McGowan, ibid., 11, 436 (1970).

14. R. Simha, paper presented at Denver Meeting of the Amer. Inst. of Chemical Engineers, September, 1970.

15. M. Kamal, personal communication.

16. R. G. Beaman, J. Polym. Sci., 9, 470 (1952).

17. K. H. Hellwege, W. Knappe, and P. Lehmann, Kolloid-Z. Z. Polym., 183, 110 (1962).

18. W. Parks and R. B. Richards, Trans. Faraday Soc., 45, 203 (1949).

19. G. N. Foster, N. Waldman, and R. G. Griskey, J. Appl. Polym. Sci., 10, 201 (1966).

20. G. N. Foster, N. Waldman, and R. G. Griskey, Polym. Eng. Sci., 2, 131 (1966).

21. R. G. Griskey and W. A. Haug, J. Appl. Polym. Sci., 10, 1475 (1966).

22. R. G. Griskey and N. Waldman, Mod. Plast., 43, 245 (May 1966).

Received February 28, 1973